Flexible hierarchical organisation of role based agents

Emmanuel Adam

Emmanuelle Grislin-Le Strugeon Rene Mandiau

LAMIH (UMR CNRS 8530) Université de Valenciennes, FRANCE

SARC'08

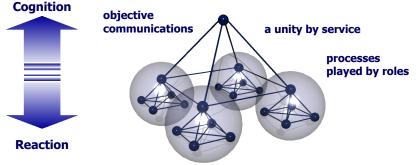
Adam, Grislin & Mandiau (LAMIH, CNRS) Flexible hierarchical organisation of role based

Plan

Background : bring MAS into human organization

Proposition of a holomas using roles

- Elements of formalisation
- Architecture

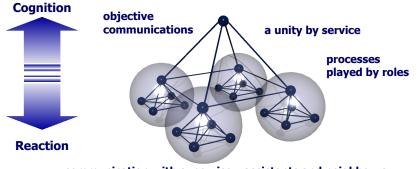

3 Dynamics in holonic multiagent organisation

- Dynamic of roles
- Robustness
- Growth
- Implementation
- 5 Application
- 6 Perspectives and Conclusion
 - Perspectives
 - Conclusion

Background : bring MAS into human organization

Background : bring MAS into human organization

Application/Social Context

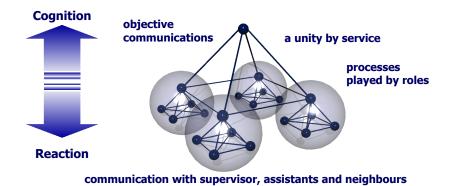

communication with supervisor, assistants and neighbours

Adam, Grislin & Mandiau (LAMIH, CNRS) Flexible hierarchical organisation of role based

Background : bring MAS into human organization

Application/Social Context

• Integration of multi-agent organization into human organization



communication with supervisor, assistants and neighbours

Background : bring MAS into human organization

Application/Social Context

- Integration of multi-agent organization into human organization
- Administrative systems as Holonic organizations

Proposition of a holomas using roles

Roles

Adam, Grislin & Mandiau (LAMIH, CNRS) Flexible hierarchical organisation of role basec

SARC'08 4 / 26

- 一司

Roles

• According to the propositions in [Koestler 69] (canon,rules,skills, strategies), a role is composed of a set of rules :

- According to the propositions in [Koestler 69] (canon,rules,skills, strategies), a role is composed of a set of rules :
 - mechanism.1 : "Functional holons are governed by fixed sets of rules and display more or less flexible strategies."

- According to the propositions in [Koestler 69] (canon,rules,skills, strategies), a role is composed of a set of rules :
 - mechanism.1 : "Functional holons are governed by fixed sets of rules and display more or less flexible strategies."
 - mechanism.2 : "The rules, referred to as the system's canon, determine its invariant properties, its structural configuration and/or functional pattern."

- According to the propositions in [Koestler 69] (canon,rules,skills, strategies), a role is composed of a set of rules :
 - mechanism.1 : "Functional holons are governed by fixed sets of rules and display more or less flexible strategies."
 - mechanism.2 : "The rules, referred to as the system's canon, determine its invariant properties, its structural configuration and/or functional pattern."
 - mechanism.3 : "While the canon defines the permissible steps in the holon's activity, the strategic selection of the actual step among permissible choices is guided by the contingencies of the environment."

Roles

٩		the propositions in [Koestler 69] (canon,rules,skills, role is composed of a set of rules :
	mechanism.1 :	"Functional holons are governed by fixed sets of rules and display more or less flexible strategies."
	mechanism.2 :	"The rules, referred to as the system's canon, determine its
		invariant properties, its structural configuration and/or functional pattern."
	mechanism.3 :	"While the canon defines the permissible steps in the holon's
		activity, the strategic selection of the actual step among
		permissible choices is guided by the contingencies of the environment."
	mechanism.4 :	"Holons on successively higher levels of the hierarchy show
		increasingly complex, more flexible and less predictable patterns of
		activity, while on successive lower levels we find increasingly

mechanised, stereotyped and predictable pattern."

Rules formalisation

Rules

• we define a rule as a set of behaviours :

$$R = (name_{R}, priority_{R}, tasks_{R})$$
$$tasks_{R} = \left\{t_{0}^{R}, \dots, t_{nt}^{R}\right\}$$
$$nt = number of tasks$$

Roles formalisation

- We define a Role as a set of essential rules and a set of secondary rules
- A searcher has to publish (a lot of) articles. To help the laboratory, he/she can manage the library, the projects, the phd students

$$role = \left(\begin{array}{c} name, priority, KP, KE, KS, \\ hardRules, flexibleRules \end{array}
ight)$$

- KP : Pre-requirement, consequences, weight,
- KE : Environmental Knowledge (data)
- KS : Social Knowledge (roles names and constraints)
 - For example : a speaker has to respect the time-limit fixed by the chair-man

Agents formalisation

Agents

Holonic Agents : Our holonic agents are defined as follow :

$$agent_a = \begin{pmatrix} KP, KE, KS, HRA, messages_a, \\ perception_a, rules_a, roles_a \end{pmatrix}$$

- $\mathsf{KP} : (Personal \ knowledge) = \{name; current \ state; individual \ goals(GI)\}$
- KE : (Environmental knowledge) = partial representations of objects of the environment.
- KS : (Social knowledge) = partial representations of the acquaintances & collective goal (GC).

Agents formalisation

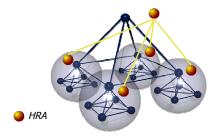
Agents

Holonic Agents : Our holonic agents are defined as follow :

$$agent_a = \begin{pmatrix} KP, KE, KS, HRA, messages_a, \\ perception_a, rules_a, roles_a \end{pmatrix}$$

- $\mathsf{KP} : (Personal \ knowledge) = \{name; current \ state; individual \ goals(GI)\}$
- KE : (*Environmental knowledge*) = partial representations of objects of the environment.
- KS : (Social knowledge) = partial representations of the acquaintances & collective goal (GC).
- HRA : (Holonic Roles Agent) = Agent that manages roles of the system.

MAS formalisation

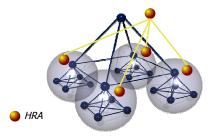

MAS

Mas and agent definition : MAS is simply defined as a set of agents. Environment definition : $E = \{object_0, object_1, ..., object_n\}$ World definition : world = (environment, mas)

Architecture

General architecture of our Holonic IMAS

Architecture

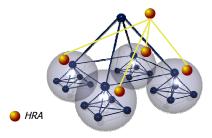


Architecture

General architecture of our Holonic IMAS

Architecture

• Each of our Holomas is assisted by a HRA that manages the roles



Architecture

General architecture of our Holonic IMAS

Architecture

- Each of our Holomas is assisted by a HRA that manages the roles
- A HRA could be a set of HRA distributed around the Holomas

Dynamic of roles

Adam, Grislin & Mandiau (LAMIH, CNRS) Flexible hierarchical organisation of role basec

Dynamic of roles

• Priority of a role's rule increases each time the agent chooses it.

- Priority of a role's rule increases each time the agent chooses it.
- Each agent has its definition of a role.

- Priority of a role's rule increases each time the agent chooses it.
- Each agent has its definition of a role.
- Each HRA agent checks if there are differences between prescribed roles and roles really played by agents.

- Priority of a role's rule increases each time the agent chooses it.
- Each agent has its definition of a role.
- Each HRA agent checks if there are differences between prescribed roles and roles really played by agents.
- New definition of a role is kept if a sufficient number of agents have modified a role in the same way.

- Priority of a role's rule increases each time the agent chooses it.
- Each agent has its definition of a role.
- Each HRA agent checks if there are differences between prescribed roles and roles really played by agents.
- New definition of a role is kept if a sufficient number of agents have modified a role in the same way.
- A secondary rule can become a hard rule if all agents always choose it.

Robustness

Adam, Grislin & Mandiau (LAMIH, CNRS) Flexible hierarchical organisation of role based

Robustness

• Two critical agents : responsible of the Holonic Roles Agents & the Holomas responsible agent.

- Two critical agents : responsible of the Holonic Roles Agents & the Holomas responsible agent.
 - physical replication, ping messages

- Two critical agents : responsible of the Holonic Roles Agents & the Holomas responsible agent.
 - physical replication, ping messages
- For other agents, a watch holon-assistants, allows to detect damaged agents

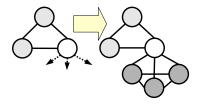
Robustness

Robustness by replication in holonic multi-agent organisation

- Two critical agents : responsible of the Holonic Roles Agents & the Holomas responsible agent.
 - physical replication, ping messages
- For other agents, a watch holon-assistants, allows to detect damaged agents
 - creation of a new agent by the responsible of the faulty agent

Robustness

Robustness by replication in holonic multi-agent organisation

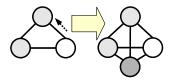

- Two critical agents : responsible of the Holonic Roles Agents & the Holomas responsible agent.
 - physical replication, ping messages
- For other agents, a watch holon-assistants, allows to detect damaged agents
 - creation of a new agent by the responsible of the faulty agent
 - re-load of roles and links from the HRA

- Two critical agents : responsible of the Holonic Roles Agents & the Holomas responsible agent.
 - physical replication, ping messages
- For other agents, a watch holon-assistants, allows to detect damaged agents
 - creation of a new agent by the responsible of the faulty agent
 - re-load of roles and links from the HRA
 - problem : loss of the data used during the breakdown

Growth in holonic multi-agent organisation

Growth when overload

• Downward Growth : The agent creates assistants and delegates some of its tasks to them.

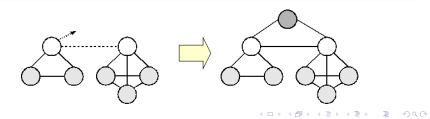


Growth

Growth in holonic multi-agent organisation

Growth when overload

- Downward Growth : The agent creates assistants and delegates some of its tasks to them.
- Horizontal growth : an agent needs a skill and its responsible creates a neighbour.

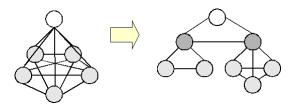


Growth

Growth in holonic multi-agent organisation

Growth when overload

- Downward Growth : The agent creates assistants and delegates some of its tasks to them.
- Horizontal growth : an agent needs a skill and its responsible creates a neighbour.
- Upward Growth : To coordinate agents / systems acting towards a same goal.



Growth

Growth in holonic multi-agent organisation

Growth when overload

- Downward Growth : The agent creates assistants and delegates some of its tasks to them.
- Horizontal growth : an agent needs a skill and its responsible creates a neighbour.
- Upward Growth : To coordinate agents / systems acting towards a same goal.
- Internal Growth : A HoloMAS agent creates internal coordinators.

Well-balanced growth

Needs :

- Needs :
 - Downward and horizontal growth must respect holonic concepts : an assistant deal with less complex roles than its responsible

- Needs :
 - Downward and horizontal growth must respect holonic concepts : an assistant deal with less complex roles than its responsible
 - Growth must produce a well-balanced holarchy

- Needs :
 - Downward and horizontal growth must respect holonic concepts : an assistant deal with less complex roles than its responsible
 - Growth must produce a well-balanced holarchy
- Use of :

- Needs :
 - Downward and horizontal growth must respect holonic concepts : an assistant deal with less complex roles than its responsible
 - Growth must produce a well-balanced holarchy
- Use of :
 - agent workload (w/)

- Needs :
 - Downward and horizontal growth must respect holonic concepts : an assistant deal with less complex roles than its responsible
 - Growth must produce a well-balanced holarchy
- Use of :
 - agent workload (wl)
 - agents maximum workload thresholds (mwt)

- Needs :
 - Downward and horizontal growth must respect holonic concepts : an assistant deal with less complex roles than its responsible
 - Growth must produce a well-balanced holarchy
- Use of :
 - agent workload (wl)
 - agents maximum workload thresholds (mwt)
 - workload of a group (sub-holomas) (gwl)

- Needs :
 - Downward and horizontal growth must respect holonic concepts : an assistant deal with less complex roles than its responsible
 - Growth must produce a well-balanced holarchy
- Use of :
 - agent workload (wl)
 - agents maximum workload thresholds (mwt)
 - workload of a group (sub-holomas) (gwl)
 - agent workload still available (wla)

- Needs :
 - Downward and horizontal growth must respect holonic concepts : an assistant deal with less complex roles than its responsible
 - Growth must produce a well-balanced holarchy
- Use of :
 - agent workload (wl)
 - agents maximum workload thresholds (mwt)
 - workload of a group (sub-holomas) (gwl)
 - agent workload still available (wla)
- Note : Use of the ContractNet protocol

Well-balanced growth

- Needs :
 - Downward and horizontal growth must respect holonic concepts : an assistant deal with less complex roles than its responsible
 - Growth must produce a well-balanced holarchy
- Use of :
 - agent workload (wl)
 - agents maximum workload thresholds (mwt)
 - workload of a group (sub-holomas) (gwl)
 - agent workload still available (wla)
- Note : Use of the ContractNet protocol
- Note : if a_1 is the assistant of a_0 ,

 $\textit{mwt}_{a_1} = \alpha \times \textit{mwt}_{a_0} \text{ with } (\alpha \in]0,1[)$

Growth

Well-balanced growth

Well-balanced growth

```
procedure HANDLECFP(ACLMessage cfp)
   loadAsked \leftarrow cfp.getContent()
   maxAssistantLoad \leftarrow \alpha \times mwt
   wla \leftarrow mwt - holonCurrentl oad
   if (wla - loadAsked) >= 0 \lor ((maxAssistantLoad - loadAsked) >= 0 \land
\neg holon.isLeaf())) then
       if (wla - loadAsked) > 0 then
           RETURN(wla, gwl)
       else
           RETURN(maxAssistantLoad, gwl)
       end if
   else
       RETURN(Refuse)
   end if
end procedure
```

SARC'08 14 / 26

Implementation of our architecture

Implementation

Adam, Grislin & Mandiau (LAMIH, CNRS) Flexible hierarchical organisation of role based

SARC'08 15 / 26

Implementation of our architecture

Implementation

• Use of JADE platform, based on empty agents that receive behaviours

Implementation of our architecture

Implementation

- Use of JADE platform, based on empty agents that receive behaviours
- Role currently implemented as a set of behaviours (not a set of hard and flexible rules)

Implementation

- Use of JADE platform, based on empty agents that receive behaviours
- Role currently implemented as a set of behaviours (not a set of hard and flexible rules)
- core behaviours used by agents :

Implementation

- Use of JADE platform, based on empty agents that receive behaviours
- Role currently implemented as a set of behaviours (not a set of hard and flexible rules)
- core behaviours used by agents :

HolonicMessagesManagement : owned by all agents; it allows an agent to handle message relative to : the acquaintances updating; the role transmission; the growth;

Implementation

- Use of JADE platform, based on empty agents that receive behaviours
- Role currently implemented as a set of behaviours (not a set of hard and flexible rules)
- core behaviours used by agents :

HolonicMessagesManagement : owned by all agents; it allows an agent to handle message relative to : the acquaintances updating; the role transmission; the growth;

RegenerationManagement : allows an agent to be survey by its acquaintances

Implementation

- Use of JADE platform, based on empty agents that receive behaviours
- Role currently implemented as a set of behaviours (not a set of hard and flexible rules)
- core behaviours used by agents :

HolonicMessagesManagement : owned by all agents; it allows an agent to handle message relative to : the acquaintances updating; the role transmission; the growth;

RegenerationManagement : allows an agent to be survey by its acquaintances RoleManagement : behaviour is linked the roles manager agents that could be compared to Directory Facilitator agents

Implementation

- Use of JADE platform, based on empty agents that receive behaviours
- Role currently implemented as a set of behaviours (not a set of hard and flexible rules)
- core behaviours used by agents :

HolonicMessagesManagement : owned by all agents; it allows an agent to handle message relative to : the acquaintances updating; the role transmission; the growth;

RegenerationManagement : allows an agent to be survey by its acquaintances RoleManagement : behaviour is linked the roles manager agents that could be compared to Directory Facilitator agents

ContractNetDelegation : linked temporarily to the initiator of the ContractNet protocol relative to the delegation of roles

Implementation

- Use of JADE platform, based on empty agents that receive behaviours
- Role currently implemented as a set of behaviours (not a set of hard and flexible rules)
- core behaviours used by agents :

HolonicMessagesManagement : owned by all agents; it allows an agent to handle message relative to : the acquaintances updating; the role transmission; the growth;

RegenerationManagement : allows an agent to be survey by its acquaintances RoleManagement : behaviour is linked the roles manager agents that could be compared to Directory Facilitator agents

ContractNetDelegation : linked temporarily to the initiator of the ContractNet protocol relative to the delegation of roles

ContractNetService : linked temporarily to the potential responders of the ContractNet protocol.

SARC'08 15 / 26

3 1 4

- ∢ ศ⊒ ▶

Well balanced growth : Example 1

Example 1 of well-balanced growth

Adam, Grislin & Mandiau (LAMIH, CNRS) Flexible hierarchical organisation of role based

Well balanced growth : Example 1

Example 1 of well-balanced growth

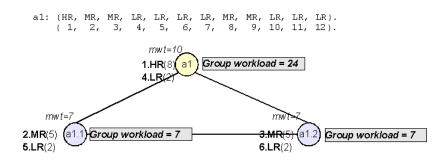
• three initial agents : a_1 having a *mwt* of 10, responsible for $a_{1.1}$ and $a_{1.2}$

Example 1 of well-balanced growth

- three initial agents : a_1 having a *mwt* of 10, responsible for $a_{1.1}$ and $a_{1.2}$
- three roles : *HeavyRole*(*HR*), *load* = 8; *MediumRole*(*MR*), *load* = 5 and *LightRole*(*LR*), *load* = 2

Example 1 of well-balanced growth

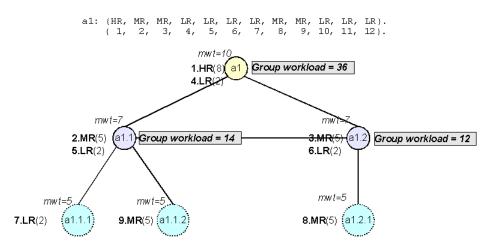
- three initial agents : a_1 having a *mwt* of 10, responsible for $a_{1.1}$ and $a_{1.2}$
- three roles : HeavyRole(HR), load = 8; MediumRole(MR), load = 5 and LightRole(LR), load = 2


•
$$\alpha = 0.75 \Rightarrow mwt_{a_{1.1}} = mwt_{a_{1.2}} = 7$$

Example 1 of well-balanced growth

- three initial agents : a_1 having a *mwt* of 10, responsible for $a_{1.1}$ and $a_{1.2}$
- three roles : HeavyRole(HR), load = 8; MediumRole(MR), load = 5 and LightRole(LR), load = 2

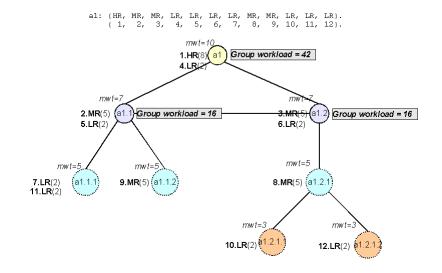
•
$$\alpha = 0.75 \Rightarrow mwt_{a_{1.1}} = mwt_{a_{1.2}} = 7$$


 scenario = add the roles {HR, MR, MR, LR, LR, LR, LR, MR, MR, LR, LR, LR} to a1

Adam, Grislin & Mandiau (LAMIH, CNRS) Flexible hierarchical organisation of role based

э

Well balanced growth : Example 1



Adam, Grislin & Mandiau (LAMIH, CNRS) Flexible hierarchical organisation of role basec

SARC'08 17 / 26

-

Well balanced growth : Example 1

Well balanced growth - Example 2

Example 2 of well-balanced growth

Adam, Grislin & Mandiau (LAMIH, CNRS) Flexible hierarchical organisation of role based

Well balanced growth - Example 2

Example 2 of well-balanced growth

• same three initial agents a_1 , $a_{1.1}$ and $a_{1.2}$; but with $mwt_{a_1} = 8$

Well balanced growth - Example 2

Example 2 of well-balanced growth

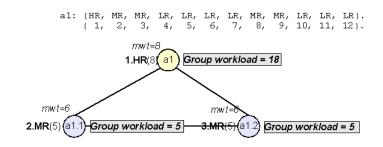
- same three initial agents a_1 , $a_{1,1}$ and $a_{1,2}$; but with $mwt_{a_1} = 8$
- same three roles : HeavyRole(HR), load = 8; MediumRole(MR), load = 5 and LightRole(LR), load = 2

Well balanced growth - Example 2

Example 2 of well-balanced growth

- same three initial agents a_1 , $a_{1,1}$ and $a_{1,2}$; but with $mwt_{a_1} = 8$
- same three roles : HeavyRole(HR), load = 8; MediumRole(MR), load = 5 and LightRole(LR), load = 2

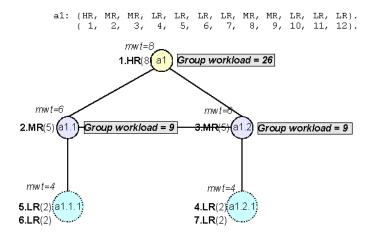
•
$$\alpha = 0.75 \Rightarrow mwt_{a_{1.1}} = mwt_{a_{1.2}} = 5$$


Example 2 of well-balanced growth

- same three initial agents a_1 , $a_{1,1}$ and $a_{1,2}$; but with $mwt_{a_1} = 8$
- same three roles : HeavyRole(HR), load = 8; MediumRole(MR), load = 5 and LightRole(LR), load = 2

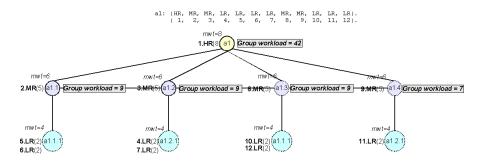
•
$$\alpha = 0.75 \Rightarrow mwt_{a_{1.1}} = mwt_{a_{1.2}} = 5$$

 scenario = add the roles {HR, MR, MR, LR, LR, LR, LR, MR, MR, LR, LR, LR} to a1


Well balanced growth - Example 2

SARC'08 19 / 26

B ▶ < B ▶


Well balanced growth - Example 2

3 🕨 🖌 3

Implementation

Well balanced growth - Example 2

SARC'08 19 / 26

∃ → (∃ →

- 一司

Implementation of an application

Implementation of a new application

Adam, Grislin & Mandiau (LAMIH, CNRS) Flexible hierarchical organisation of role based

Implementation of an application

Implementation of a new application

• Just have to program the behaviours

Implementation of an application

Implementation of a new application

- Just have to program the behaviours
- Relation between roles and behaviours, agents and roles and between agents are described in a xml file

Implementation of an application

Implementation of a new application

- Just have to program the behaviours
- Relation between roles and behaviours, agents and roles and between agents are described in a xml file
- An application deploys the agents on the net and transmits them roles and initial data

Implementation of an application

Implementation of a new application

- Just have to program the behaviours
- Relation between roles and behaviours, agents and roles and between agents are described in a xml file
- An application deploys the agents on the net and transmits them roles and initial data
- Currently : Turn to a OWL-S representation of roles and the HoloMAS

Applications

• Assist cooperative work into a patent department [Holomas'00] and a technological watch department [AOIS'04]

Method

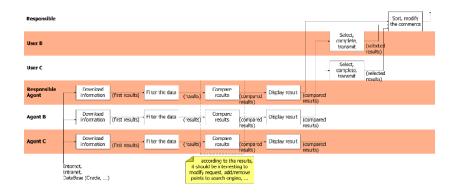
Analysis and modelling of the human organization

Applications

• Assist cooperative work into a patent department [Holomas'00] and a technological watch department [AOIS'04]

Method

- Analysis and modelling of the human organization
- Improvement of the human organization based on the models


Applications

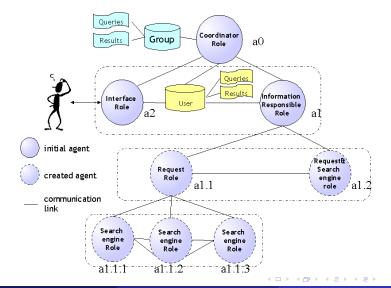
• Assist cooperative work into a patent department [Holomas'00] and a technological watch department [AOIS'04]

Method

- Analysis and modelling of the human organization
- Improvement of the human organization based on the models
- Oesign of a MAS based on holonic principles and modeled on the human organization

Example on a case study : Information MultiAgent System Modeling the human activities

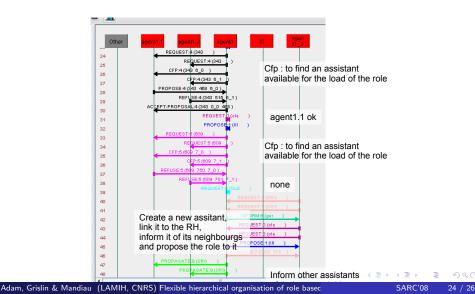
Adam, Grislin & Mandiau (LAMIH, CNRS) Flexible hierarchical organisation of role based


SARC'08 22 / 26

-

-

Image: Image:


Example on a case study : Information MultiAgent System Architecture of the proposed Holonic IMAS

Adam, Grislin & Mandiau (LAMIH, CNRS) Flexible hierarchical organisation of role basec

SARC'08 23 / 26

Example on a case study : Information MultiAgent System Exchanged messages during a delegation

Perspectives : self-* capacities

Perspectives

Adam, Grislin & Mandiau	(LAMIH, CNRS	Flexible hierarchica	l organisation of role based	
-------------------------	--------------	----------------------	------------------------------	--

< ≣ > <

-

Perspectives : self-* capacities

Perspectives

• Evaluation of rules utility based on the reinforcement

Adam, Grislin & Mandiau (LAMIH, CNRS) Flexible hierarchical organisation of role based

Perspectives : self-* capacities

- Evaluation of rules utility based on the reinforcement
 - Problem : always use the same rules \rightarrow to allow to test other rules

Perspectives : self-* capacities

- Evaluation of rules utility based on the reinforcement
 - $\bullet\,$ Problem : always use the same rules \rightarrow to allow to test other rules
- Criticity of the agents : only the 2 heads of the systems are said criticals

Perspectives : self-* capacities

- Evaluation of rules utility based on the reinforcement
 - Problem : always use the same rules \rightarrow to allow to test other rules
- Criticity of the agents : only the 2 heads of the systems are said criticals
 - $\bullet \rightarrow$ use an automatic detection of the agents criticity

Perspectives : self-* capacities

- Evaluation of rules utility based on the reinforcement
 - Problem : always use the same rules \rightarrow to allow to test other rules
- Criticity of the agents : only the 2 heads of the systems are said criticals
 - $\bullet \rightarrow$ use an automatic detection of the agents criticity
- Roles :

Perspectives : self-* capacities

- Evaluation of rules utility based on the reinforcement
 - Problem : always use the same rules \rightarrow to allow to test other rules
- Criticity of the agents : only the 2 heads of the systems are said criticals
 - $\bullet \rightarrow$ use an automatic detection of the agents criticity
- Roles :
 - Role complexity : specified and implemented by the programmers \rightarrow automatic detection of role complexity

Perspectives : self-* capacities

- Evaluation of rules utility based on the reinforcement
 - Problem : always use the same rules \rightarrow to allow to test other rules
- Criticity of the agents : only the 2 heads of the systems are said criticals
 - $\bullet \rightarrow$ use an automatic detection of the agents criticity
- Roles :
 - Role complexity : specified and implemented by the programmers \rightarrow automatic detection of role complexity
 - Perspective : automatic detection of the inter-blocking situations / non cooperative behaviour

Perspectives : self-* capacities

- Evaluation of rules utility based on the reinforcement
 - Problem : always use the same rules \rightarrow to allow to test other rules
- Criticity of the agents : only the 2 heads of the systems are said criticals
 - $\bullet \rightarrow$ use an automatic detection of the agents criticity
- Roles :
 - Role complexity : specified and implemented by the programmers \rightarrow automatic detection of role complexity
 - Perspective : automatic detection of the inter-blocking situations / non cooperative behaviour
 - Implementation of the totality of our proposition

onclusion	

Conclusion

 We propose a multi-agent organisation using both notion of roles and notion of hierarchy.

Conclusion

- We propose a multi-agent organisation using both notion of roles and notion of hierarchy.
- This proposition help us to easily develop MAS to help actors of complex administrative systems.

Adam, Grislin & Mandiau (LAMIH, CNRS) Flexible hierarchical organisation of role based

Conclusion

- We propose a multi-agent organisation using both notion of roles and notion of hierarchy.
- This proposition help us to easily develop MAS to help actors of complex administrative systems.
- Improve the proposition by self-* capacities.

Adam, Grislin & Mandiau (LAMIH, CNRS) Flexible hierarchical organisation of role based

- We propose a multi-agent organisation using both notion of roles and notion of hierarchy.
- This proposition help us to easily develop MAS to help actors of complex administrative systems.
- Improve the proposition by self-* capacities.
- running projects

Conclusion

- We propose a multi-agent organisation using both notion of roles and notion of hierarchy.
- This proposition help us to easily develop MAS to help actors of complex administrative systems.
- Improve the proposition by self-* capacities.
- running projects
 - Develop an applicative framework for a "tangible table"

- We propose a multi-agent organisation using both notion of roles and notion of hierarchy.
- This proposition help us to easily develop MAS to help actors of complex administrative systems.
- Improve the proposition by self-* capacities.
- running projects
 - Develop an applicative framework for a "tangible table"
 - Assist workflow for a logistic managment problem (start soon)